ОГЛАВЛЕНИЕ

	CTp.
ОРГАНИЗАТОРЫ И СПОНСОРЫ	vi
МЕЖДУНАРОДНЫЙ ОРГКОМИТЕТ КОНФЕРЕНЦИИ	vii
ПРОГРАММНЫЙ КОМИТЕТ	viii
ПРИВЕТСТВИЯ КОНФЕРЕНЦИИ	ix
АЛЬБЕРТ ЭЙНШТЕЙН И КВАНТОВАЯ ТЕОРИЯ (к 100-летию статьи А.Эйнштейна о квантовой природе света)	xxi
К 100-ЛЕТИЮ ИВАНА НИКИТОВИЧА ФРАНЦЕВИЧА	xxiv
К 75-ЛЕТИЮ АКАДЕМИКА В.И. ТРЕФИЛОВА	xxvi
ПАМЯТИ Г.И. БАУЭРА	xxviii
ПАМЯТИ А.А. КАЦНЕЛЬСОНА	xxix
ПАМЯТИ К. Н. СЕМЕНЕНКО	xxxi
СЕКЦИЯ 1 ГИДРИДЫ МЕТАЛЛОВ	
СЕКЦИЯ 1.1 ПОЛУЧЕНИЕ ГИДРИДОВ МЕТАЛЛОВ	1
Механохимический синтез абсорбирующих водород фаз на основе Mg и Co	6
О взаимодействии водорода со сферическими частицами сплава типа BT5-1	10
Промышленные технологии получения водородоаккумулирующих материалов на основе соединения	14
LaNi ₅	
Мордовин В.П., Касимцев А.В., Алехин В.П., Жигунов В.В.	10
Электрохимическое образование гидридов в условиях импульсного электролиза	18
Образование гидридов в полом цилиндре	22
Оценка кинетических параметров формирования гидрида	26
Незазрушающийся микроструктурный композит на основе титана	32
Применение гидридов металлов для получения наноразмерных порошков металлов и сплавов в различных средах	36
Бухтияров В.К., Манорик П.А., Ильин В.Г., Ермохина Н.И., Коржак А.В., Кучмий С.Я., Павлюков А.А., Цивилицин В.Ю., Опанасенко О.С., Бондар И.Б.	
Влияние азотной примеси внедрения на температурные интервалы удержания дейтерия в стали X18H10T.	39
Неклюдов И.М., Морозов А.Н., Кулиш В.Г., Журба В.И.	
Применение метода термодесорбционной спектрометрии для построения Т-с диаграмм на примере системы Ті-D. Неклюдов И.М., Морозов А.Н., Кулиш В.Г.	42

СЕКЦИЯ 1.2 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ГИДРИДОВ МЕТАЛЛОВ	45
Синтез свойства и пути ассимиляции гидрида алюминия	49
Моделирование процессов тепло- и массопереноса в металлогидридном реакторе	51
Квантовая теория состояния и диффузии водорода в переходном (магнитном) металле	53
Гидриды интерметаллических соединений, содержащих платиновые металлы	55
Падурец Л.Н., Кузнецов Н.Т., Шилов А.Л.	
Исследование подвижности водорода в соединениях $HfCr_2H_x(D_x)$ со структурой типа $C14$ методом ЯМР	58
Солонинин А.В., Скрипов А.В., Бузлуков А.Л., Воеводина Л.С.	(2
Изотопический эффект в твердом растворе водорода и азота в α-Ti	62
Фазовые равновесия в гидридах интерметаллидов в модели неидеального (взаимодействующего)	
решеточного газа	66
Локальные градиенты электрических полей и барьеры заторможенного вращения в комплексных дейтеридах галлия	70
Тарасов В.П., Киракосян Г.А., Бакум С.И.	
К вопросу влияния давления на термодинамические свойства гидридов металлов	74
Работа выхода электрона водород-сорбирующих интерметаллидов в системе церий-кобальт	78
Водород-аккумулирующие композиты MgH_2 -углерод. Лукашев Р.В., Клямкин С.Н., Тарасов Б.П.	82
Проблемы «быстрой» сорбции и десорбции водорода гидридами металлов	86
Ангармонизм оптических колебаний водорода в	90
RhH	
Кристаллохимический анализ структуры дейтеридов Ti ₄ .	96
_x Zr _x Fe ₂ O _y	
Особенности термолиза борогидрида циркония. Кравченко С.Е., Калинников Г.В., Коробов И.И., Блинова Л.Н., Торбов В.И., Шульга Ю.М., Шилкин С.П., Андриевский Р.А.	100
Деструкция при газовом и электрохимическом насыщении водородом аморфного сплава $Mg_{65}Cu_{25}Y_{10}$ Савяк М.П., Геберт А., Улеман М., Солонин Ю.М.	108
Электронная структура водородных бронз H_xWO_3 и H_xMoO_3 по данным исследований методами рентгеновской фотоэлектронной и эмиссионной спектроскопии	112
Особенности гидрирования сплавов Ti-Zr-Ni, содержащих аппроксимантную	116
фазу Карпец М.В., Солонин Ю.М., Великанова Т.А., Фомичев. А.С., Карпец Ф.М., Хомко Т.В.	

Кинетика взаимодействия с кислородом водородопоглощающего сплава	120
ТіАІ Чуприна В.Г., Шаля И.М.	
Механизм взаимодействия с кислородом водородосодержащего сплава TiAl	124
Взаимодействие с водородом сплавов Mg-P3M-Ni и композитов на их	128
основе Борисов Д.Н., Фурсиков П.В., Yartys V.A., Allan Schroder Pedersen, Тарасов Б.П.	
Водородоаккумулирующие свойства низкоразмерных систем на основе Ti-Zr и Al-Mg сплавов	132
Строение аморфных твёрдых фаз воды и захват молекул CH ₄ H ₂ в мультиструктурах	136
льда Безносюк С.А., Пережогин А.А.	
Корреляция между степенью ионности металл-водородных связей в гидридах и их термической	
устойчивостью	140
Структурные исследования псевдобинарных соединений $R(Cu_{1-x}Ga_x)_2(R=La\ Ce\ Y\ Tb\ Ho\ Dy\ Pr\ Nd)$ и их	143
гидридов	
Особенности низкотемпературного взаимодействия механически активированного гидрида титана с	
азотом	148
. Савяк М.П., Людвинская Т.А., Муратов В.Б., Горбачук Н.Г., Гарбуз В.В., Мацера В.Е., Исаева Л.П., Уварова И.В.	
Структура и водородсорбционные свойства новых сплавов на основе магния	154
Определение энергии связи водорода в различных материалах с помощью абсолютных измерений его	1.50
концентрации в твердой пробеПопов-Дюмин Д.Б.	158
Магнитные свойства гидридов ${\rm Er_2Fe_{14}BH_x}$	162
Взаимосвязь наводороживания и структуры никелевых плёнок	166
ТДС-спектр дегидрирования: моделирование с учетом сжатия частиц порошка гидрида	170
Калориметрическое исследование взаимодействия водорода с ZrMn ₂	174
Исследование взаимодействия водорода с ${\rm Ti}_{0.9}{\rm Zr}_{0.1}{\rm Mn}_{1.3}{\rm V}_{0.5}$. калориметрическирм методом	177
О способах и механизмах снижения термической устойчивости гидридных фаз механических сплавов на основе Mg, Ti, Y	180
Ершова О.Г., Добровольский В.Д., Солонин Ю.М., Морозова Р.А.	
Влияние легирования палладия элементами третьей группы на его взаимодействие с водородом и водородопроницаемость мембран для очистки водорода	183
Бурханов Г.С., Рошан Н.Р., Кольчугина Н.Б., Кореновский Н.Л., Словецкий Д.И., Чистов Е.М., Мамонов Н.А.	

	сновы расчета концентрации добавок гидрида-интерметаллида IV группы в арбидов титана и хрома	180
	сследование и моделирование кинетики разложения	190
	т А.П., Габис И.Е., Клямкин С.Н., Лукашев Р.В., Тарасов Б.П.	
плазменного источник	идного полого катода на функцию распределения ионов, извлекаемых из ка H ⁺	193
Нейтронные исследова	ания ГЦК СгН и ГПУ СгН	190
ТbFe ₆ Co ₅ Ti Панкратов Н.Ю	магнитокристаллическую анизотропию монокристалла О., Никитин С.А., Скоков К.П., Iwasieczko W., Телегина И.В., Drulis H., Iacтушенков Ю.Г., Gutfleisch O., Handstein A., Müller K.H.	200
	я на магнитные и магнитоупругие свойства монокристалла Lu ₂ Fe ₁₇	20
	р Кюри и эффективных обменных полей в ферримагнитных соединениях $R_2Fe_{14}B$	• 0
	, Терешина Е.А., Никитин С.А., Чистяков О.Д., Бурханов Г.С., Друлис Г.	20
органических раствора	етику сорбции водорода сплавами Li-P3Э-Al при катодной поляризации в водно- ах кислот	212
атм)	NbVCoD _{2,3} синтезированного при высоком газовом давлении (до 2000 , Глазков В.П., Соменков В.А., Вербецкий В.Н.	21
Термодинамические х лантанидов	арактеристики процесса десольватации тетрагидрофуранатов борогидридов Мирсаидов И.У., Бадалов А.Б., Курбонбеков А.	213
•	арактеристики ди – и три – гидридов лантанидов	22
бором	ивания электроосаждённых никелевых плёнок, легированных в., Кравцова Ю.Г.	220
Симметрия подрешеть	ки водорода в тригидриде	230
где M=Cu Al	структурное исследование процесса активации в системах LaNi _{5-x} M _x -H ₂ ,	23
•		
	в титановых порошках разного способа производства	23
Максимчук И.Н	ые превращения в сплавах системы Mg-Y-Ni-H	24
лантаном		24
• •		
Nb		25
бором	В., Кравцова Ю.Г. жи водорода в тригидриде Антонов В.Е., Башкин И.О., Хансен Т., Натканец И., Заварицкая В.А. структурное исследование процесса активации в системах LaNi _{5-х} M _x -H ₂ , ", Яковлева Н.А., Клямкин С.Н., Шелихов Е.В. в титановых порошках разного способа производства. М., Бабенко Е.П. ые превращения в сплавах системы Мg-Y-Ni-H. Н., Ткаченко В.Г., Карпец М.В., Щербакова Л.Г., Волосевич П.Ю., Малка А.Н., І., Фризель В.В., Пятачук С.Г. я различных примесей в мишметалле, обогащенном слеперис Я., Вайварс Г., Нечаев А., Поулсен Ф.В., Педерсен А.Ш.	2: 2: 2: 2:

Образование и состав клатратной фазы в системе H_2O-H_2 при давлениях до 1.8 кбар. Баркалов О.И., Клямкин С. Н., Ефимченко В.С., Антонов В.Е.	254
Равновесные давления дейтерия над сплавами $Zr_{1-x}Ce_xMn_2$ (x =0,1-0,3). Демина С.В., Глаголев М.В., Веденеев А.И.	258
Кинетика индуцированных водородом фазовых превращений в сплаве Sm_2Fe_{17}	262
Комментарии по поводу параметров эволюции ближнего порядка, определенных по данным о кинетике релаксации теплоемкости сплава Lu—H	270
СЕКЦИЯ 1.3 ИСПОЛЬЗОВАНИЕ ГИДРИДОВ МЕТАЛЛОВ	273
Металлогидридный тепловой конвектор для охлаждения энергонапряженных конструкционных элементов в плазменных устройствах	275
Бориско В.Н., Зиновьев Д.В., Середа И.Н., Целуйко А.Ф.	
Некоторые уроки химии в свете проблем аккумулирования водорода (удачи, ошибки, мистификации)	280
Алексеева О.К., Падурец Л.Н., Паршин П.П., Шилов А.Л.	
Создание композитных трубчатых водородоселективных мембран на основе сплавов палладия: подготовка керамических подложек	286
Использование микропроцессора для управления работой и диагностикой генератора водорода	290
Применение водорода для получения легких сплавов с малым тепловым расширением	294
Использование водорода и фосфора для производства поршневых	299
силуминов	
Водородный механизм кристаллизации алюминиевых	304
сплавов	
Получение керамического композиционного материала на основе нитрида титана методом реакционного электроразрядного спекания смеси ${\rm TiH_2-}$	308
В N	
Некоторые вопросы конструирования гидридных реакторов	312
Об особенностях сорбционных характеристик сплавов на основе фаз Лавеса, полученных в укрупненном масштабе	316
Влияние водородо-термической обработки порошков нитридов на свойства композиционных материалов на их основе.	322
Морозова Р.А., Морозов И.А., Панашенко В.М., Рогозинская А.А., Дубовик Т.В., Иценко А.И.	
Ведущая роль водорода в получении доменного чугуна	326
Влияние водородного упорядочения на время протонной спин-решеточной релаксации в суперстохиометреческих дигидридах лантана LaH _{2+c}	330

Особенности изменения содержания водорода азота и кислорода в сером чугуне	333
Использование гидридов металлов для аккумулирования солнечной	338
энергии	
Исследование процессов высокоэнергитического размола порошков TiH_2 -BN в атмосфере азота Хобта И.В., Петухов А.С., Исаева Л.П., Лобунец Т.Ф., Тимофеева И.И.	342
Увеличение эффективности гидридных тепловых устройств	346
Синтез 4-бромкубан-1-карбальдегида с использованием гидрида бис (N-метилпиперазинил) алюминия Захаров В.В., Бугаева Г.П., Баринова Л.С., Романова Л.Б., Шастин А.В., Еременко Л.Т.	350
Восстановление метилового эфира 4-бромкубанкарбоновой кислоты алюмогидридом лития и гидридом	
алюминия	354
К особенностям накопления водорода на	357
электродах	
СЕКЦИЯ 2 УГЛЕРОДНЫЕ НАНОСТРУКТУРНЫЕ МАТЕРИАЛЫ	
СЕКЦИЯ 2.1 ПОЛУЧЕНИЕ ФУЛЛЕРЕНОВ И УГЛЕРОДНЫХ НАНОСТРУКТУР	359
Теоретическое изучение углеродных фаз	362
Загинайченко С.Ю., Матысина З.А., Молодкин В.Б., Щур Д.В., Янкович В.Н., Помыткин А.П.	
Новые углеродные наноструктуры, полученные электрохимическим методом Огенко В.М., Лысюк Л.С., Волков С.В., Шпак А.П.	366
Синтез углеродных нановолокон пиролизом этилена на Mg_2Ni . Володин А.А., Фурсиков П.В., Тарасов Б.П.	370
Высаливание как новый низкотемпературный метод получения допированных фуллеритов	374
Влияние ультразвукового облучения растворов C_{60} на кристаллическую структуру осаждённого фуллерита.	378
Шульга Ю.М., Баскаков С.А., Мартыненко В.М., Петинов В.И., Разумов В.Ф., Щур Д.В.	
Синтез фуллеренов в потоке гелия при атмосферном давлении	382
Булина Н.В., Лопатин В.А., Внукова Н.Г., Kratschmer W., Чурилов Г.Н.	
Синтез и исследование фторированных углеродных многостенных	386
нанотрубок	
Электровзрывные методы получения углеродных наноматериалов	390
О некоторых особенностях получения фуллеритов в аргоновой	396
дугеПодгорный В. И., Яковлев А. Н., Белашев Б. 3.	

Новый способ получения фуллеренов и кластеров углерода из промышленных дымовых газов с использованием электрического разряда	401
Структурные и механические свойства пленок наноструктурного и аморфного SiC:H	404
Иващенко В.И., Порада О.К., Иващенко Л.А., Дуб С.Н., Тимофеева И.И., Закиев И.М.	
Синтез углеродных нанотрубок пиролизом СН $_4$ на катализаторе Fe/Mo/SiO $_2$ /Si $_3$ N $_4$	408
Исследование структурных превращений Fe – MgO катализатора в процессе пиролитического синтеза углеродных наноматериалов	412
Каталитический синтез углеродных наноматериалов из паров этанола	416
Рентгенофазовый экспресс-анализ содержания фуллерена в электродуговой саже	420
Формирование упорядоченных наноструктур углерода в процессе пиролиза гидратцеллюлозы, содержащей металлы подгруппы железа	424
Сафонова А.М., Шпилевская Л.Е., Батура С.В., Бежок О.В., Гонов А.Н.	
Поликарбонатные пленки, допированные эндоэдральными металлофуллеренами	428
Газофазный синтез соединений внедрения графита с FeCl ₃ и материалов на его основе	431
Некоторые проблемы генезиса карбонадоподобных образований	434
Поликонденсационный механизм превращения молекул углеводородов в пространственные молекулы углерода	438
Харламов А.И., Кириллова Н.В.	
Особенности роста нитевидных наноструктур в порах пластинки пористого	442
кремния Кириллова Н.В., Ушкалов Л.Н., Карачевцева Л.Т., Головкова М.Е., Фоменко В.В., Харламов А.И., Скрипниченко А.В.	
Электронная и атомная структура нетрадиционных аллотроп углерода и полиморф нитрида бора Покропивный В.В., Бекенев В.В.	445
Химическое модифицирование поверхности наноалмазов	448
Синтез углеродных нанотрубок на водорастворимых носителях	452
Котёл Л.Ю., Бричка С.Я., Приходько Г.П., Бричка А.В.	155
Матричный синтез углеродных нанотрубок в открытых порах Al_2O_3	455
Кода В.Ю., Нищенко М.М., Лихторович С.П., Приходько Г.П., Бричка С.Я., Бричка А. В.	
Электрохимическое поведение серного электрода, модифицированного фуллереновой сажей, в неводных растворах LiClO ₄	458
Попова С.С., Шапошникова Е.А., Кущ С.Д.	

электролитическое получение углеродных нанотруоок из хлоридно-оксидных расплавов под давлением диоксида	462
углерода	
Новоселова И.А., Олийнык Н.Ф., Волков С.В.	
Свойства композиционных материалов фторопласт - многостенные УНТ	466
Семенцов Ю.И., Мележик А.В., Пятковский М.Л., Янченко В.В., Рево С.Л., Дашевський Н.Н., Сенкевич А.И., Гаврилюк Н.А., Приходько Г.П.	
Разработка технологии получения легированных Fe, Ni, и Co графитовых электродов для исследования процесса синтеза углеродных наноструктур	470
Углеродные наноматериалы на основе каталитического пиролиза углеводородов: состояние разработок и перспективы использования	474
Наноуглеродные	478
материалы	
Совершенствование устройства для получения наноструктурных материалов методом	482
сжигания Литвиненко Ю.М.	102
Синтез хиноксалиносодержащих органофуллеренов - потенциальных биологически активных соединений	486
Юсупова Г.Г., Ларионова О.А., Романова И.П., Калинин А.А., Мамедов В.А., Латыпов Ш.К., Баландина А.А., Синяшин О.Г.	
Разработка подходов к синтезу индивидуальных изомеров бис(органо)[60]фуллеренов. Бис(азагомо)фуллерены	490
Термохимическое исследование хлорфуллерена C_{60} Cl_{30}	493
Исследование кристаллогеометрических параметров нанопорошков тугоплавких соединений	496
Синтез и свойства водорастворимых производных фуллерена	500
Моделирование электронного строения валентной зоны карбиноподобных 1D систем с водородом Воинкова И.В., Байтингер Е.М.	504
Функция распределения атомов фтора по глубине при радиационной карбонизации ПВДФ	508
Статистический вес образования фуллеренов в условиях каталитического взаимодействия метана с водяным паром	512
Получение наноструктурных материалов в солнечных печах	516
Образование тройных соединений внедрения графита с CuCl ₂ и H ₂ SO ₄	519
Композиционные покрытия, содержащие фуллерен	522
С ₆₀	-

Тройные соединения внедрения графит — $H_2SO_4 - C_2H_5COOH$. Шорникова О.Н., Симонова Е.Н., Авдеев В.В.	525
Синтез наноструктур углерода в композитах-матрицах на основе высокодисперсного диоксида кремния Дубровина Л.В., Огенко В.М., Голдун О.В., Волков С.В.	528
Химический метод получения экзофуллеренов в растворе	532
К механизму образования углеродных наноструктур. Щур Д.В., Загинайченко С.Ю., Скороход В.В.	534
Синтез углеродных наноструктур в жидком	540
Гелии	
Синтез наноструктур в хлорсодержащих	544
средах	
Щур Д.В., Дубовой А.Г., Загинайченко С.Ю., Котко А.В., Власенко А.Ю., Тесленко Л.О., Фирстов С.А., Скороход В.В.	
СЕКЦИЯ 2.2 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА УГЛЕРОДНЫХ НАНОСТРУКТУРНЫХ МАТЕРИАЛОВ	547
Электропроводность кристаллов фуллерена C_{60} в условиях многоступенчатого динамического сжатия до 300 кбар	552
Модель механизма каталитического влияния фуллеренов на фазовый переход графиталмаз Кидалов С.В., Соколов В.И., Шахов Ф.М., Вуль А.Я.	555
Масс-спектрометрическое исследование состава газа, выделяемого при нагреве допированного метаном фуллерита C_{60}	
Шульга Ю.М., Мартыненко В.М, Баскаков С.А, Сурсаева В.Г., Щур Д.В.	
Свободно-радикальное галогенирование углеродных наноматериалов при низких температурах Михайлов А.И., Пахомова В.А., Кузина С.И., Баскаков С.А., Шульга Ю.М., Володин А.А., Мурадян В.Е.	562
Позитронная спектроскопия жидкокристаллических органических веществ с растворёнными фуллеренами C_{60}	565
Фоменко И. Е., Нищенко М.М., Лихторович С.П., Мирная Т.А., Былина Д.В.	
Конфигурационная теплоемкость фуллерита в области фазового перехода ПКР↔ГЦКР	568
Структура и электрические свойства плёнок олово – фуллерен C_{60}	572
Жданок С.А., Шпилевский Э.М., Шпилевский М.Э., Матвеева Л.А.	
О поведении фуллерена в среде аммиака при различных температурах	576
Фокин В.Н., Шульга Ю.М., Фокина Э.Э., Коробов И.И., Володин А.А., Бурлакова А.Г., Мурадян В.Е., Тарасов Б.П.	
Изучение взаимодействий и поверхностей раздела углеродных наноструктур и биологических молекул Ловбешко Г И Образцова Е Л Назарова А А Семенцов Ю И	580

внедрения	заимодействии примесных	внутри	•	спаду их раствора ГЦК-	584
	., Кулиш Н. П., Леонов Д.				
Электронная эмисси излучения	я катодов из нано Шевченко Н.А., Щур Д.В.			гвием лазерного	587
	, полученные из полимерн		•	•	590
Алексеева О.К.,	Амирханов Д.М., Котенко	А.А., Челяк М.	М., Шапир Б.Л.		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		стабильності	ь кристаллов	фуллерита	594
Проводимость	наноуглеродного	1	иатериала,	содержащего	598
1 3	 Лень Т.А., Мацуй Л.Ю., Щ	ур Л В Прилуп	кий Ю И Экпунл П		
Электронное	строение	И	свойства	углеродных	602
1 2	Лихторович С.П., Лисунов				
Гетерометаллические ф и	руллериды на основе щело	чных металлов	и непереходных мета.	плов 2, 12 13	606
	ульбачинский В.А., Крече				
Фотопроводимость поле	монокристаллов	C ₆). B	магнитном	610
Головин Ю.И, Л	опатин Д.В., Николаев Р.К	С., Умрихин А.В	., Родаев В.В.		
облучением	одимость фуллеритов Іопатин Д.В., Николаев Р.І		_	нтенсивным β-	614
Теоретико-методологи и	ческая оценка соотношени окислит	ия структуры и ельных	состава в формирова	нии сорбционных свойств	618
Гарбуз В.В., Зах	аров В.В.	• • • • • • • • • • • • • • • • • • • •			
CsHSO ₄	онного переноса и Ю.А., Астафьев Е.А., Арха	фазовых ангельский И.В.,	превращений в Ветрова Т.И.	системе С ₆₀ -	622
	исследование продуктов ду				627
Головко Э.И., П	ишук О.В., Золотаренко А	.Д., Щур Д.В., З	агинайченко С.Ю.		
Дериватографическое при	исследование термической электродуговом		зитов, образующихся пылении	Me ₁ -Me ₂ -C	633
	ишук О.В., Боголепов В.А		А.П., Савенко А.Ф		
Термодинамические	свойства	новых	структурных	форм	638
Литвиненко В.Ф					
Модифицирование C ₆₀	гексагональ		фазы	фуллерита	642
Скокан Е.В., Ај	рхангельский И.В., Тамм ахманина А.В., Агафонов	Н.Б., Человска	я Н.В., Никулин М.М	М., Сенявин В.М.,	

	накопления ц Н.В., Прилуцкий Ю		между	нанотрубкам	и, созданных	646
Структурные разряда		еридах в услові	иях ионной (в плазме тлеющего ., Щур Д.В.	650
	о Л.С., Лубенец С.В.,	•	руллерита ценко Ю.Е., И	С ₆₀ , зотов А.И., Нико	интеркалированного олаев Р.К.,	654
-	структура ольская И.П., Черейс		волокон ва Т.Е., Губано	на основ ова Г.Н.	ве жесткоцепных	658
медицины	изаторы на основе ва И.М., Белоусов В.		· · · · · · · · · · · · · · · · · · ·			661
Ковалентно-зо катализа Мицек А		удержания	водоро	рда в	фуллерене и	663
углерода	теория ме А. И., Пушкарь В. Н.,		и магни	тного поря	ядка нанотрубок	665
Межзонные оп повреждениях Дмитрен		з твердых фуллер 	 И., Щур Д.В., (ем, при радиационных	667
Расчет	модуля				нонотрубок	670
		н энга	1	лгперолных	нанотоуюск	6/0
	-			/глеродных	нанотрубок	670
Лисунов Полиаморфны алмазах	за Ю.А., Нищенко М	 М., Кода Н.В., П полиморфные	риходько Г.П. превраг	цения в	_	673
Лисунов Полиаморфны алмазах Агафоно Взаимодействи и	за Ю.А., Нищенко М е и ов С.С., Глазков В.П. ие кристаллических и	.М., Кода Н.В., П полиморфные , Николаенко В.А и аморфных фулл	риходько Г.П. превраг , Соменков В перенов с водо	цения в .А. родом, пределы	з облученных ными углеводородами их	
Лисунов Полиаморфны алмазах Агафоно Взаимодействи и	ва Ю.А., Нищенко М е и ов С.С., Глазков В.П. ие кристаллических и	.М., Кода Н.В., П полиморфные , Николаенко В.А и аморфных фулл	риходько Г.П. превраг , Соменков В перенов с водо	цения в .А. родом, пределы	з облученных ными углеводородами их	673
Лисунов Полиаморфны алмазах	ва Ю.А., Нищенко М е и ов С.С., Глазков В.П. ие кристаллических и ов С.С., Глазков В.П. ов А.А.	.М., Кода Н.В., П полиморфные , Николаенко В.А аморфных фулл, Кокин И.Ф., Луг	риходько Г.П. превраг ., Соменков В перенов с водо шников С.А., С	цения в .А. родом, пределы	з облученных ными углеводородами их	673
Лисунов Полиаморфны алмазах	ва Ю.А., Нищенко М е и ов С.С., Глазков В.П. ие кристаллических и ов С.С., Глазков В.П. ов А.А. ома фтора с боковой ис Вл.А., Мурюмин Е коподобных и	.М., Кода Н.В., П полиморфные, Николаенко В.А а аморфных фулл, Кокин И.Ф., Луг стенкой односте: Е.Е., Томилин О.Е нитевидных	риходько Г.П. превраг ., Соменков В перенов с водо шников С.А., С	цения в .А. родом, пределы	в облученных ными углеводородами их Сырых Г.Ф.,	673 675
Лисунов Полиаморфные алмазах	ва Ю.А., Нищенко М е и ов С.С., Глазков В.П. ие кристаллических и ов С.С., Глазков В.П. ов А.А. ома фтора с боковой ис Вл.А., Мурюмин Е коподобных и	.М., Кода Н.В., П полиморфные, Николаенко В.А а аморфных фулл , Кокин И.Ф., Луг стенкой односте: Е.Е., Томилин О.Е нитевидных	риходько Г.П. превран	цения в .А. родом, пределы	в облученных ными углеводородами их Сырых Г.Ф.,	673675678
Лисунов Полиаморфные алмазах	ва Ю.А., Нищенко М е и ов С.С., Глазков В.П. ие кристаллических и ов С.С., Глазков В.П. ов А.А. ома фтора с боковой ис Вл.А., Мурюмин Екоподобных и .В.	.М., Кода Н.В., П полиморфные, Николаенко В.А и аморфных фулл, Кокин И.Ф., Луг стенкой односте: Е.Е., Томилин О.Е нитевидных при	риходько Г.П. превран	цения в .А	в облученных ными углеводородами их Сырых Г.Ф., к	673 675 678 682

Исследование структу способах очистки					696
Кетков С.Ю., Сег	менов Н.М., Жогова	К.Б., Зайковский І	В.И.		
Электрохимические метано[60]фуллеренов. Янилкин В.В., На	астапова Н.В., Тороп		ов В.И., Губская	карбонилсо я В.П., Нуретдино	
Закономерности матрицыГарбуз В.В Заха				оставе у	глеродной 704
Эффект сужения ульт химической связи в кри Зауличный Я.В.	грамягких рентгено	вских эмиссионн	ых полос и е		
Особенности сужения со анатаза	структурой		рутила		шков ТіО ₂ 711 и
	ный Я.В., Зарко В.И				
Особенности тонкой турбостратного, ВN	17 71 1		•		(5-10 нм) 713 подобного
5	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ALTON	фуллерит-мон	окристалл 716
меди		КОМПС			окристалл /10
Бажин А.И., Тро	цан А.Н., Чертопалог	в С.В., Ступак В.А	., Вишняков А.	В.	
Одномерно неуг фуллерита Солонин Ю.М., I		структуры	в крист	саллических	плёнках 720
Структурные эффект	ы в ультрадиспе	рсном алмазе	при термичес	ких и термоб	арических 724
	ичный Я.В., Исаева Элейник Г.А., Рогози				
Влияние электрокинет характеристики		-		ериалов на их с	служебные 728
Шевченко В.М,.	Дуда Т.И., Подгорнь	лй А.В.			
	Савельев А.В., Хомич	,	1	азотом: получ , Попович А.Ф.,	ление и 732
Заведеев Е.В., Бо		_			1 725
Молекулярное фуллеренов	строение и явин В.М., Мельхано			спектры олталина О.В.	фторидов 735
Солюбилизация углеро полимеров					
	ренко В.А., Мацуй Л Прилуцкий Ю.И., Э		з., Лень Т.А.,Заг	чнайченко С.Ю.,	
Применение методов I [70]фуллерена					
 Горюнков А.А., Н.С., Хаврель П.	Игнатьева Д.В., До А.	рожкин Е.И., Ма	рков В.Ю., Пи	менова А.С., Овч	чинникова

ГПУ 70	Zn		модельный	материал	для	изучения	я двойнико	В В	C-60/C-	746
Физик систем	1	неские	закономері ух К.А., Бельска			я соо	стояния	энерго-эл	ементных	750
Чувсті углеро наноті	вительно одных рубок	ость спе	жтроскопии хај М., Байтингер Е	рактеристич	еских по				ардировке	754
диаме			структура жин И.В., Смир		родных	на	анотрубок	пер	ременного	757
нанотр			структ жин И.В., Богос			Т-соедине	ний	уг	глеродных	759
C_{32}			рные структу жин И.В.	/ры на	основе	малых	фуллеренов	C ₂₀ , (C_{24} , C_{28} ,	761
_	рубок		й и де жин И.В., Жиря	•	на э.	пектроннун	о структу	ру уг	глеродных	763
Элект <u>ј</u> нанотј	ронная рубок		структ	ура		Ү-соедине	ний	уг	глеродных	765
Кванто	ово-хим ировани	ическое	нения при низк				-			768
Рентге			исследование в , Солонин Ю.М			родных наі	нотрубок			771
Особе			вских СКα-спек , Солонин Ю.М			ных волоко	Эн			773
учетом		тичного	синглет-трипле отклика							776
пленка	груктурі ах	ных	ического спектрВарюхин В.Н				•	-	глеродных	780
	убках		ре Демушкина Е.І			В		yı	глеродных	784
Электр	ронная ренов		структура		И	ст	абильность		высших	788
зонда.	ние осо	бенносте	ей гидратации		углерода	в водных	дисперсиях м	етодом З	ЭПР спин-	792
Влиян транст	ие на юрта	нотрубо		иффузию бенко А. Г.,	атомов Разумов 1	водорода В.Ф.	и процес	сы эле	ктронного	796

Капиллярные пленок		механические	свойства	легированных	к нанокристаллич	еских алмазных	800
Островс	кая Л.К	О., Дуб С.Н., Рал	ьченко В.Г.	, Савельев А.В.,	Терехов С.В.		
Износостойкос организма			•		в моделы	ной жидкости	803
Лашнева	ı B.B., Д	Г убок В.А., Ткач	енко Ю.Г.,	Матвеева Л.А.			
нанотрубок Объедко	в А.М.,	исследование	омрачев Г.А		многостенных Титова С.Н., Кетког И.	углеродных з С.Ю.,	806
-					й при низких клима	-	809
Слепцов	О.И., С	Сивцев М.Н., Се	менов С.С.,	Слепцов Г.Н., Х	Сарбин Н.Н.		
материалов, метана	П	олучаемых	на	основе	войства нановолокн каталитического И.С., Кувшинов Д.Г	разложения	812
		войства сплавов ра В.А., Судавц		ержащих систем	1		816
наноматериало	В				ионных характери Щур Д.В., Шапошні		820
					/ сь В.А., Мухачев А.І	нагнетатель	824
Исследование в Боголепов	влияния В.А., І	и конвекции на п Цур Д.В., Астра	иролитичес тов Н.С., Ру	кий синтез угле дницкая А.А., Д	родных нанострукту (жевага Т.В., Лысен Копылова Л.И., Гол	/рко Е.А.,	828
	 B.A., I	ончаренко Т.В.			 А.А., Ляху И.В., Чер	углеродных оныш Л.Н.,	832
		2 1	1 5		Рогозинская А.А., К		836
Щур Д.В.,	Хотын	свойства енко Н.Г., Голог Власенко А.Ю.			сажденных это О.В., Загинайчен	покрытий ко С.Ю.,	840
		ур Д.В., Патока			е ико М.М., Тесленко	дисперсные Л.О.	844
Идентификация спектроскопии. Аникина 1 Золотарен	Н. С.,	Кривущенко О.		иеталлофуллере . В., Загинайче	нов методо		848
		_			ессах растворениЯ	I фуллерена C ₆₀	853
Аникина Н	Н.С., Щ	ур Д.В., Загинай	ченко С.Ю.	, Кривущенко С	.R.		
спектроскопии		ны соотношен vp ЛВ Загинай			и С ₇₀ методом Л Мильто К А К	•	857

СЕКЦИЯ 2.3 ХРАНЕНИЕ ВОДОРОДА В НАНОСТРУКТУРНОМ УГЛЕРОДЕ
Результаты теоретических и экспериментальных исследований адсорбции водорода углеродными наноматериалами
Чурилов Г.Н., Федоров А.С., Марченко С.А., Костиневич Е.М., Булина Н.В., Gedanken А. Улучшенные композитные материалы для хранения водорода на основе наноразмерного углерода и металлогидридов
Особенности гидрирования фуллеридов 87 платины
Хранение водорода в компексах ароматических соединений с никелем. 8′ Давыдов В.Я., Давыдов П.Е., Лунин В.В.
Адсорбция атомарного водорода на поверхности борнитридных нанотрубок. 8′ Маргулис Вл.А., Мурюмин Е.Е., Томилин О.Б.
Об адсорбции молекулярного водорода на внешней поверхности углеродных нанотруб
Изучение изотопных эффектов при адсорбции водорода и дейтерия на нанопористом углероде в диапазоне температур 67-78 К
Наноструктурированные углеродные материалы на основе ИК-пиролизованного 89 полиакрилонитрила Карпачева Г.П., Земцов Л.М., Багдасарова К.А., Муратов Д.Г., Ермилова М.М., Орехова Н.В. Исследование механизмов внутреннего насыщения однослойных углеродных нанотрубок малого диаметра атомарным водородом
СЕКЦИЯ 2.4 ДРУГИЕ ПРИМЕНЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ 89
Сенсорные системы на основе наноуглеродных 90 материалов
Разделение H_2 и CO на окисленном ивостановленном молекулярно-ситовом углеродном 90 волокне Бервено В.П., Брюховецкая Л.В., Наймушина Т.М., Петров И.Я., Лырщиков С.Ю.
Новая конструкция электронной пушки для автоэмиссионных источников света с катодом из 9 углеродных волокон.
 Лешуков М.Ю., Шешин Е.П.
Новая методика изготовления автоэмиссионных катодов низкотемпературным осаждением из паров 9 этанола
. Ламанов А.М., Ж Ибрагимов Р.М., Никольский К.Н., Редькин А.Н, Чесов Р.Г., Шешин Е.П. Фотосенсибилизаторы на основе фуллеренов и фуллереноподобных наноструктур для биологии и медицины.

Белоусова И.М,. Белоусов В.П., Крисько А.В., Крисько Т.К., Муравьева Т.Д., Сироткин А.К.

Получение, некоторые свойства и применения композиционных наноалмазосодержащих материалов Яфаров Р.К.	918
Металлоуглеродные наноструктурированные мембранные катализаторы	922
Наноструктурированные электродные материалы для литий-ионных аккумуляторов	925
Получение CVD алмазных покрытий на инструментальных материалах	928
Численное исследование газофазных процессов получения керамических покрытий, модифицированных углеродными нанотрубами	932
Физическая модель термоэлектрического преобразователя на полуметаллических углеродных нанотрубках.	936
Мавринский А.В., Байтингер Е.М.,	
Структура и свойства железных сплавов с ультрадисперсными образованиями свободного углерода Баранов Д.А., Баранов А.А.	940
Методы модификации полимерных материалов углеродными наноструктурами	944
Действие гидратированных фуллеренов на мембрану эритроцита	948
Углерод-углеродные композиты с турбостратной структурой матрицы на основе ароматических полиимидов	952
Физические процессы на поверхности автоэмиссионных катодов из углеродных наноматериалов Бормашов В.С., Шешин Е.П.	956
Композиционные покрытия, содержащие Со, С $_{60}$, В, ультрадисперсные алмазы (УДА)	960
Автоэлектронная эмиссия из наноуглерода	963
Применение фуллеренов и других углеродных наполнителей для модификации структуры и физикомеханических свойств композитов на основе полиимидов	966
Електронно-ионные процессы в нанопористом углероде, стимулированные лазерным облучением Будзуляк И.М., Беркещук М.В.	970
Ультрадисперсные алмазы детонационного синтеза как средство коррекции процессов пероксидации белков и липидов при злокачественном росте	974
СЕКЦИЯ 3 МАТЕРИАЛЫ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ	977

Низкотемпературные протонпроводящие мембраны для топливных элементов: от Nafion к современным материалам	980
лихачев Д.Ю., Добровольский Ю.А., Писарева А.В.	
Разработка мини топливных элементов для портативных электронных устройств. Систер В.Г., Фатеев В.Н., Бокач Д.А.	984
Перспективные катализаторы окисления водорода для топливных элементов (обзор)	988
Нанокластеры платины на углеродных наноматериалах для водородных топливных элементов	992
Композиты электропроводных полимеров и термо-расширенного графита как катализаторы восстановления кислорода	996
Барсуков В.З., Хоменко В.Г., Каташинский А.С.	
Палладий как электрокатализатор для топливных элементов с ТПЭ	1000
Водород как альтернативное топливо для Москвы и Московской области	1004
Многофункциональный интегральный электрод топливного элемента на основе макропористого кремния. Конструкция и технология	1008
Перспективы использования газо-эвтектических пористых материалов в топливных элементах Шаповалов В.И.	1012
Синтез платиносодержащих углеродных наноструктур	1017
Полимерные протонпроводящие мембраны на основе поливинилового спирта и ароматических кислот Писарева А.В., Добровольский Ю.А.	1026
Исследование зарядно-разрядных характеристик металлогидридных электродных материалов	1031
Исследование водородопроницаемости алюминия и его защитных свойств	1034
Исследование физических свойств материалов для топливных элементов и углеродных наноструктурных материалов с помощью акустических волн гигагерцевого диапазона	1038
Компьютерное моделирование переноса ионов H^+ , H_3O^+ , $H_5O_2^+$ в наноструктурных супермолекулах воды Безносюк С.А., Пережогин А.А.	1042

Электронное строение соединения NdVO ₃ : рентгеновские спектры и зонные расчеты в ЛППВ- приближении	1046
Электронное строение соединений $La_{1+n}Ni_nO_{3n+1}$ (n=1, 2, 3 ∞): рентгеновские спектры и зонные расчеты в ЛППВ-приближении. Уваров В.Н., Сенкевич А.И., Урубков И.В.	1050
Сравнительные исследования процессов интеркаляции протонов в керамических и монокристаллических цератах бария и стронция	1054
Электронное строение некоторых никелитов лантана	1058
Электрофизическое и рентгеноспектральное исследование электродного материала на основе легированных никелитов самария	1062
Применение слоистых InSe и GaSe кристаллов и порошков для твердотельных накопителей водорода Жирко Ю.И., Ковалюк З.Д., Пырля М.М., Боледзюк В.Б.	1065
Теоретические и экспериментальные исследования каталитических слоев топливных элементов с твердым полимерным электролитом	1068
Структура и формирование пленок твердого электролита на основе диоксида циркония	1072
Осаждение катализаторсодержащих углеродных наноструктур на протонпроводящие полимерные мембраны методом электрофореза	1076
СЕКЦИЯ 4 ПОЖАРОВЗРЫВОБЕЗОПАСНОСТЬ ВОДОРОДСОДЕРЖАЩИХ МАТЕРИАЛОВ	1079
Сенсор водорода на основе наночастиц WO_{3-X} . Электронная и атомная структура, электрофизические характеристики	1082
Определение пожаровзрывоопасных технологических параметров систем хранения и подачи водорода на основе обратимых гидридов интерметаллидов	1086
Выработка критериев предельного состояния водородсодержащих твердотельных материалов с помощью методов акустомикроскопической дефектоскопии	1090
Особенности горения гидрида алюминия	1094
Особенности выделения водорода при гидролизе суспензии натрия в толуоле	1098
СЕКЦИЯ 5 ВОДОРОДНАЯ ЭНЕРГЕТИКА И ПРОБЛЕМЫ ОКРУЖАЮЩЕЙ СРЕДЫ	1101

Автомобиль с водородеИпатов А.А., <i>А</i>	комбинированной Алешин С.В., Лежнев Л.	-	установкой,	работающей н	та 1104			
Направленный синтез сорбентов и матриц захоронения радиоактивных и токсических отходов								
Борогидрид натрия для хранения водорода								
Оптимизация работы гидридных тепловых насосов								
Современные данные получения твёрдого водорода								
	ика и экологические про и Т.А.				1124			
Ингибирование водо параметров Попов В.В., Д	родопроницаемости пок енисов Е.А.	рытием из TiN: идент	гификация кинет	ических	1128			
Активированные угл	еродные материалы и ад	дсорбционное хранен	ие водорода		1132			
	Кулаков А.Г., Васильев	Л.Л.,			1136			
Международное сотрудничество в области развития водородной экономики								
помощью гелиоконцентраторов	стной теплопроводности вКосторнов А.Г., Шапова				1140			
Магнитный контроль	ь водородной	-			1144			
	В., Швец С.Н., Победа							
	авления в ракетно-космі нин Ф.П.				1147			
Исследование энергетики процессов электрохимического получения водорода в реакторах Шалимов Ю.Н., Островская Е.Н., Литвинов Ю.В.								
О возможности исполоснове водорода	льзования сорбентов для	я производства энерго	етических растен	ий и получения на их	1154			
Швец Д., Стрелко В., Опенько Н., Галушка Т.								
Сжимаемость фаз параводорода на линии насыщения								
действия				۸.	1162			
Жданок С.А., Гаврилюк В.В., Калинин В.И., Буяков И.Ф., Додь А.И., Пацко О.А. Влияние водорода на замедленное разрушение мартенситностареющих								
сталей		•						

Автономные ветроводородные станции	1170
Электронные переходы в квантовых точках InAs/GaAs с	1174
водородомПелещак Р.М., Данькив О.Е.	
Концентрирование энергии избыточных электронов на углеродных	1178
материалах Роговик В.И., Тюпало Н.Ф.	
Получение водорода путем частичного окисления метана в волне фильтрационного горения	1182
Моделирование дегидратации и дегидрогенизации в диоксиде циркония с анионной	1186
примесью	
Проницаемость водорода через металлы: теория и	1190
экспериментПримаков Н.Г., Казарников В.В., Руденко В.А.	
Технические и технологические методы осуществления паровой, каталитической конверсии природного газа с водяным	1194
паром	
О роли газосодержания в чугунах	1198
Особенности измерения степени диссоциации водорода в плазменных условиях	1202
Особенности взаимодействия Ті с атомарным водородом	1205
Фазовые превращения в цирконии при изотермическом гидрировании	1207
Исследование метастабильных состояний жидкостей при высоких	1208
давлениях Б., Гусейнов А.Ф., Алибейли Р.	
Адсорбция водорода нанопористыми углеродными	1212
материалами	
Особенности процесса разложения пропана с образованием нановолокнистого углерода и водорода на Ni – содержащих	1216
катализаторах	
Трифторметилирование эндоэдральных металлофуллеренов $M@C_{82}$ ($M = Y, Ce$): синтез, выделение и строение	1220
. Кареев И.Е., Бубнов В.П., Лаухина Е.Э., Федутин Д.Н., Ягубский Э.Б., Лебедкин С.Ф., Кувычко И.В., Страус С.Г., Болталина О.В.	
АВТОРСКИЙ УКАЗАТЕЛЬ	1232
ОГЛАВЛЕНИЕ	1259